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SUMMARY 

Trees are a keystone species in many ecosystems and a critical component of ecological 

restoration. As seed sourcing shifts from the traditional use of ‘local-provenancing’ toward 

incorporating genetic material from populations already adapted to projected future climates, 

understanding adaptation to climate will be necessary for determining appropriate seed 

sources under climate change. This project aimed to increase knowledge of climate 

adaptation in Eucalyptus microcarpa, an important restoration tree species in south-eastern 

Australia. With support from the Australian Flora Foundation, this project was able to 

combine new genomic approaches with traditional trait based analyses to gain a greater 

understanding of climate adaptation in E. microcarpa. A panel of single nucleotide 

polymorphisms (SNPs), previously identified as putatively climate-adaptive, were tested and 

13 of these SNPs were found to be associated with growth and leaf traits. They suggest 

potential roles of growth, development, and stress response genes as well as gene regulation 

underpinning adaptive trait variation in E. microcarpa. Drawing on previous SNP-climate 

and trait-climate association results, several associations were identified between all three 

comparisons of phenotype, genotype and climate. These multiple and independent analyses 

provide strong evidence of climate adaptation in E. microcarpa. They also highlight several 

traits, such as leaf length, and climate variables such as mean annual temperature, aridity and 

winter precipitation, as potentially important factors in climate adaptation in this species. 

Together these results increase knowledge of climate adaptation in E. microcarpa, including 

potential traits and underlying genetic variants that warrant further in depth investigation, as 

well as information that can help inform restoration seed sourcing under climate change. 

 

 

INTRODUCTION 

Trees are a critical components of ecological restoration to mitigate effects of habitat loss and 

fragmentation (Prober et al., 2016). Despite generally wide climate tolerances, recent 

environmental changes have had notable impacts on tree populations, including die-back 

(Calder & Kirkpatrick, 2008; Matusick et al., 2013) and shifts in distribution (Wearne & 

Morgan, 2001). How trees respond to potential changes in climate beyond the conditions of 

local populations could therefore have significant implications for their wider ecosystems. 

Consequently, understanding the distribution of adaptation in trees underpins the design of 
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strategies to manage evolutionary potential in natural and restoration tree populations under 

climate change.  

Understanding adaptive variation within species is a major goal for forest tree research, past 

and present (Neale & Kremer, 2011). Common garden trials have been extensively used to 

investigate adaptation via assessments of genetic variation in traits (Kremer et al., 2014; 

Aitken & Bemmels, 2015). These have demonstrated significant genetic variation in traits 

within species along environmental clines (Vitasse et al., 2014; McLean et al., 2014; 

McKown et al., 2014), including variation across climatic gradients (Holliday et al., 2010; 

McLean et al., 2014; Gauli et al., 2015). More recently, genomic technologies are emerging 

as a complementary approach for assessing adaptation (Stapley et al., 2010; Holliday et al., 

2016). They enable investigations in shorter time frames and without the logistical 

investments required for common garden experiments (Neale & Kremer, 2011; Sork et al., 

2013). In addition, genomics can be used to identify genes and genomic regions that have 

responded to selection (Dillon et al., 2014; Yeaman et al., 2016; Sork et al., 2016).  

Whilst genomics is rapidly becoming an invaluable tool for climate adaptation studies in tree 

species (Holliday et al., 2016), combining phenotypic and genomic analyses can bolster 

evidence of local adaptation (Sork et al., 2013; Rellstab et al., 2015; de Villemereuil et al., 

2016). Such an approach links climate-adapted traits with underlying adaptive genetics, 

providing a mechanistic validation of genomic signatures of selection via insights into their 

role, and potential function in mediating phenotypes under selection (Neale & Kremer, 2011; 

Rellstab et al., 2015; de Villemereuil et al., 2016).  

Eucalypts are the dominant trees in the majority of Australian forests and woodlands 

(Williams & Brooker, 1997) and are widely used in restoration plantings (Prober et al., 

2016). For many eucalypt species, climate change is projected to decrease the extent of 

climate-suitable habitat (Hughes et al., 1996; Butt et al., 2013), with migration in trees 

unlikely to match rates of climate change, hindered by long generation times, altered land use 

and low topographic relief in Australia (Aitken et al., 2008; Hughes, 2011). Understanding 

current climate adaptation will be important for utilising adaptive variation to enhance 

evolutionary potential in both natural and restored sites for these keystone species.  

In this study, we investigated associations between quantitative traits, putatively adaptive 

SNPs and climate variables, to infer evidence of climate adaptation in Eucalyptus microcarpa 

(Maiden) Maiden (Grey Box). Eucalyptus microcarpa is an important restoration species in 
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south-eastern Australia, used to mitigate widespread habitat loss across the species’ 

distribution due to clearing for agriculture. Previous landscape genomic analyses on E. 

microcarpa identified genomic signatures of climate adaptation, including genomic variants 

associated with temperature, precipitation and aridity (Jordan et al., 2017). Furthermore, 

quantitative trait analyses demonstrated heritable, genetic variation in traits that was also 

associated with climate (Jordan et al. in preparation). Building on these results, this study 

aimed to bolster evidence for climate adaptation as well as gain greater insight into potential 

mechanisms involved in climate adaptation by combining these independent genotypic and 

phenotypic analyses. In particular, this study asked 1) Are putatively adaptive genomic 

variants associated with quantitative traits, 2) do these associations match previous 

independent analyses and 3) does this support evidence of climate adaptation in E. 

microcarpa?  

 

METHODS 

To look for links between potentially adaptive genomic variation and quantitative traits, a set 

of 40 putatively adaptive candidate single nucleotide polymorphisms (SNPs) were genotyped 

in 422 individuals, for which both growth and leaf trait data were collected (Table 1).  

Trait data 

Growth and leaf measurements were drawn from a previous study 

examining quantitative trait variation in E. microcarpa (Jordan et 

al. in preparation). Briefly, an E. microcarpa trial site containing 

12 provenances from across its distribution was established near 

Collie, Western Australia in 1988 by the Western Australian 

Department of Conservation and Land Management. The trial site 

was planted in a randomised complete block design with four 

replicates. Nine growth and leaf traits were measured in spring 

2014; three growth traits – Diameter at Breast Height (DBH), Height and Size Ratio 

(Height:DBH), and six leaf traits – Leaf Area, Leaf Length, Leaf Thickness, Leaf Weight, 

Leaf Density and Specific Leaf Area (SLA). Data for 422 trees from 7 provenances across 

Victoria and New South Wales were used in this study (Table 1, Figure 1). These 

provenances matched the sampling distribution of the landscape genomic study from which 

the SNP data in this study is drawn (Jordan et al., 2017).  



   5 

Table 1 Information on the seven provenances studied in the E. microcarpa provenance trial 
including the number of trees genotyped from the trial site, and climate data of original 
provenance locations. Climate data from Atlas of Living Australia (http://www.ala.org.au). 
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VICTORIA               
Avoca 58 

 
0.740 1.797 

 
529 103 176 6 14 

 
13.7 43 28.8 

Benalla 58 
 

0.698 1.745 
 

550 108 174 7 16 
 

15.4 44 30.9 
Bendigo 66 

 
0.640 1.613 

 
489 88 154 5 13 

 
14.4 44 29.9 

NEW SOUTH WALES              
Deniliquin 60 

 
0.394 0.989 

 
374 85 109 5 10 

 
15.6 46 31.5 

Forbes 57 
 

0.479 1.017 
 

556 158 134 8 13 
 

16.8 45 33.1 
Wagga 61 

 
0.487 1.189 

 
489 110 133 7 12 

 
16.4 45 33 

West Wyalong 62 
 

0.427 1.010 
 

466 124 113 7 12 
 

16.4 45 32.8 
Total 422 

       
  

    Minimum 
  

0.394 0.989 
 

374 85 109 5 10 
 

13.7 43 28.8 
Maximum 

  
0.740 1.797 

 
556 158 176 8 16 

 
16.8 46 33.1 

Trial site (WA) 
 

0.796 2.445 
 

587 42 307 2 24 
 

15.2 45 30.6 
1 Ratio precipitation to potential evaporation (pan, free-water surface) 
Max. = maximum; Abs. = absolute 

 

 
Figure 1 Original provenance locations of the seven Eucalyptus microcarpa provenances 
used in the trial planting site and this study. Grey dots indicate recorded occurrences of E. 
microcarpa (dark) and E. woollsiana (light) respectively (data from Atlas of Living 
Australia; http://www.ala.org.au), providing an indication of the species’ distribution. ACT = 
Australian Capital Territory. Tas. = Tasmania. 
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Genotyping 

Candidate adaptive SNPs were chosen from previous genomic analyses of climate adaptation 

in E. microcarpa (Jordan et al., 2017). Candidate SNPs were selected based on identification 

as an FST outlier in at least one of the four analyses – BayeScan (Foll & Gaggiotti, 2008), 

hierarchical FDIST2 (Excoffier et al., 2009), FDIST2 (Beaumont & Nichols, 1996; Antao et 

al., 2008) or Bayenv2 XT X (Günther & Coop, 2013) or identification of a strong association 

with at least one of the ten climate variables tested (Bayenv2, BF > 20; Coop et al. 2010; 

Günther & Coop 2013). In the previous analyses, environmental association analyses were 

only performed on SNPs identified as FST outliers. To expand the list of potential candidate 

SNPs for genotyping in this study, environmental associations were performed in Bayenv2 

for all 4,218 SNPs, using the same methodology as the previous analysis (refer to Jordan et 

al., 2017). Potential candidate SNPs were filtered to those with a minor allele frequency of 

greater than 0.05 in at least six of the seven original provenance sites and to SNPs within 

2,000 bp of a putative E. grandis gene with an Arabidopsis thaliana orthologue (TAIR10) 

based on E. grandis v 1.1 annotation (Myburg et al., 2014).  

An additional 25 non-adaptive SNPs were included to account for population structure. Non-

adaptive SNPs were selected from those not significant in all four FST outlier tests – 

BayeScan (q > 0.2), hierarchical FDIST2 (p > 0.1), FDIST2 (q > 0.2) and XT X (outside top 

10% of 3 runs), not strongly association with any of the 10 climate variables tested (Bayenv2, 

BF < 20), and with a minor allele frequency greater than 0.05 in at least six of seven original 

provenance sites. Despite the smaller dataset, the final dataset of 65 SNPs provided a fair 

representation of the population structure found previously in the full dataset of 4,218 SNPs 

(Jordan et al., 2017) – there was a correlation of  r = 0.69 for provenance-level pairwise FST 

estimates of the 65 genotyped SNPs within the provenance trial compared to the full dataset 

of 4,218 SNPs for the seven original natural sites (pairwise FST calculated in Arlequin v 

3.5.1.2; Excoffier et al., 2005). 

Flanking sequences for each SNP were extracted from genomic read data. Firstly, an E. 

microcarpa consensus sequence was created from genomic read data flanking the SNPs of 

interest by modifying the E. grandis v 1.1 sequence using samtools mpileup v 1.2-10 and 

bcftools v 1.3 (Li et al., 2009). E. microcarpa sequences for each SNP locus were then 

created by extracting flanking regions covered by known E. microcarpa reads from the 

“whole genome” consensus. 
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To genotype the SNPs, approximately 25 mm2 of dried leaf material per tree and fasta 

sequences of SNP loci were sent to Diversity Arrays Technology Pty Ltd for DNA extraction 

and subsequent SNP genotyping via DArTmp multiplex PCR. Genotypes were called from 

allele read counts using the maximum likelihood method described by Blischak et al. (2016) 

in R (v 3.2.1; R Core Team, 2015), using an error rate of 0.05 and only scoring genotypes 

with a minimum total read depth of 20. Data was filtered to SNPs and individuals with < 50% 

missing data. Linkage between genotyped SNPs was calculated using the ‘r’ function in 

PLINK (v 1.90b3p; Purcell et al., 2007). Little linkage was found between all SNPs (average 

r2 = 0.003 ± s.d. 0.005), the adaptive subset or neutral SNP subset (r2 = 0.004 ± 0.006 and r2 

= 0.004 ± 0.005, respectively). 

Genotype-phenotype associations 

SNP-trait associations between the 40 putatively adaptive SNPs and nine scored traits were 

performed on 422 individuals in TASSEL (v 5; Bradbury et al., 2007). To account for 

population structure, a covariance PCA was performed in TASSEL using all 65 SNPs. 

Overall genetic variation, estimated via AMOVA in Arlequin using all 65 SNPs, found 3% of 

the variation occurred between populations. Therefore, the first PC accounting for variance 

found between populations (PC1 = 4.1%) was retained in all analyses.  

To account for relatedness between individuals, a kinship matrix was created in Coancestry 

(v 1.0.0.1; Wang 2011). The coefficient of relatedness (2θ) was calculated using the triadic 

likelihood estimator (Wang 2007) and using 100 reference individuals. This estimator can 

account for potential inbreeding when estimating relatedness, an important consideration 

given the mixed mating system of eucalypts (House 1997). Inbreeding (f) was calculated 

using the estimator of Lynch & Ritland (1999), which bounds inbreeding coefficient 

estimates between 0 and 1. Two different kinship matrices were tested. The first used the 

individual kinship estimates, allowing for variation in the degree of relatedness between all 

individuals, including across families and provenances. As the small number of SNPs used in 

this study may result in large error rates, an alternative matrix was created using the average 

family-level relatedness within and between families. This can reduce the effects of 

individual spurious estimates, especially between provenances, however it may reduce 

genuine unique relationships. The average relatedness (2θ) within and between each family 

and the average inbreeding (f) within each family was calculated and an individual matrix 

created using family-level averages. 
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SNP-trait associations were tested using two alternative linear models – 1) a generalised 

linear model (GLM) including a single PC fitted as a fixed effect to account for population 

structure, and 2) a mixed linear model (MLM), also including one PC as a fixed term with 

kinship included as a random effect to account for relatedness between individuals. Both the 

raw individual kinship matrix and family-average kinship matrix were tested in the MLM.  

To provide additional support for climate adaptation in E. microcarpa, and possible 

underlying genetic mechanisms, we compared results from the three independent pairwise 

associations of genotype, phenotype and climate performed in this and previous analyses. 

Results of SNP-climate (Jordan et al. 2017), and trait-climate (Jordan et al. in preparation) 

associations were compared to SNP-trait associations in this study. In trait-climate 

associations, growth and leaf traits were reduced to principal components to reduce 

correlations between traits. For comparisons in this study, climate association results for the 

principal component(s) to which the individual traits loaded were used (Appendix, Table 

A.1) 

 

RESULTS 

Genotype-phenotype associations 

Associations between putatively adaptive SNPs and quantitative trait variation supported a 

genetic basis for trait variation, providing insights into possible genomic regulatory factors, 

as well as validating results of previous genomic adaptation analyses. Thirteen putatively 

adaptive SNPs were significantly associated with at least one of the nine measured traits 

(Appendix, Table A.2). For growth traits, three significant SNP-trait associations (p < 0.05) 

were identified, both with and without accounting for kinship. The three SNPs each explained 

approximately 0.9 – 1.9% of trait variation. For leaf traits, 17 significant associations were 

identified (Table A.2). Six leaf SNP-trait associations were identified using only the GLM 

(no kinship), whilst three were found only when kinship was accounted for using a MLM. 

The remaining eight associations were identified both with and without accounting for 

kinship. The amount of leaf trait variance explained by an individual SNP varied from 0.6 – 

3.3%. No SNP-trait associations were significant after correction for multiple testing across 

SNP-trait comparisons within a model (GLM or MLM).  
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Based on Arabidopsis thaliana orthologues of putative E. grandis genes (TAIR10; Table A.2; 

TAIR (2017)), variation in growth traits may be influenced by genes related to auxin-

activated signalling (At3g13980, TAIR (2017)) and development (CHC1, TAIR (2017)). 

Leaf traits were associated with TAIR10 orthologue genes found to be associated with 

response to stress (PRK5, Yoon et al. (2014); MGL, Less & Galili (2008); MYB78, Yanhui 

et al. (2006)), transcription (MYB78; ZPR2, Wenkel et al. (2007)) and biotinylation of 

carboxylases (HCS1, Chen et al. (2013)) in A. thaliana and other plant species. 

Seven climate-related associations were corroborated in several independent analyses, 

namely previous SNP-climate associations (Jordan et al., 2017), trait-climate associations 

(Jordan et al.) and finally SNP-trait from this study (examples in Figure 2). As such these 

results provide stronger evidence of genetically based climate adaptation in E. microcarpa 

including potential genes underlying climate-related trait variation. 

 

 
Figure 2 Examples of corroboration between three independent association analyses in 
Eucalyptus microcarpa – genotype (SNP; a) SNP 2:63702271, b) SNP 5:5009176), 
phenotype (leaf length) and climate (mean annual temperature). Main plot = trait (provenance 
level Best Unbiased Linear Estimates, BLUEs) vs climate. Box plot (right, yellow) = SNP vs 
trait (provenance BLUEs). Box plot (top, red) = SNP vs climate. Error bars in main plot = 
95% confidence interval. Box plot whiskers extend to 1.5 × interquartile range. 
  

Leaf length was associated with five SNPs (SNP 1:17805026, 2:57262814, 2:63702271, 

5:5009176 and 6:39617441; examples in Figure 2) sharing a number of climate associations, 

suggesting several possible genes involved in climate-associated variation in leaf length. Leaf 
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length correlated primarily with the first, but also the second leaf trait axis. Both leaf length, 

via its correlation to the second leaf trait axis and all five SNPs were associated with mean 

annual temperature and all except SNP 5:5009176 were also associated with warmest period 

maximum temperature. In addition, the second leaf trait axis and SNPs 1:17805026, 

2:57262814 and 5:5009176 were associated with aridity, and the second leaf trait axis and 

SNP 2:57262814 were associated with winter precipitation. Based on A. thaliana orthologues 

of predicted E. grandis genes, possible genes or functions that may influence climate-related 

variation in leaf length include an MYB domain protein (MYB78; SNP 2:63702271), an 

alpha/beta-Hydrolases superfamily protein (SNP 2:57262814), a C2 calcium/lipid-binding 

plant phosphoribosyltransferase family protein (SNP 6:39617441) and proteins of unknown 

function or hypothetical proteins (SNP 1:17805026 and SNP 5:5009176; refer to Table A.2). 

Results for leaf density suggest a possible link to SNP 6:39617441 (putative A. thaliana 

orthologue, C2 calcium/lipid-binding plant phosphoribosyltransferase family protein; Table 

A.2) and temperature, with both the SNP and leaf density, via its correlation with the second 

leaf trait axis, associated with mean annual temperature and warmest period maximum 

temperature. 

Finally, a potential link was found between size ratio and SNP 10:29282238, supported by 

both the trait, via correlation with the second growth trait axis, and the SNP associated with 

mean annual temperature and warmest period maximum temperature. Based on A. thaliana 

orthologues of predicted E. grandis genes, a possible SWIB/MDM2 domain or galactose 

oxidase/kelch repeat superfamily protein may be involved in temperature related variation in 

size ratio (Table A.2). 

 

DISCUSSION 

This study found increased evidence of not only local adaptation to climate in E. microcarpa, 

but also potential mechanisms involved in climate adaptation. These results suggest 

important climate-related genetic variation in this species, and highlight potentially important 

climate variables that may be useful for restoration seed sourcing. Whilst this is a small 

study, and results should be interpreted cautiously, the findings are bolstered by agreement 

between multiple lines of evidence for local adaptation based on genotype, phenotype and 

environmental associations. The results are therefore presented as suggestive of adaptation 

but warranting further investigation. 
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Linking genotype & phenotype 

Greater support for climate adaptation may be achieved by combining multiple independent 

lines of enquiry (Sork et al., 2013; Eckert et al., 2013; de Villemereuil et al., 2016). SNP-trait 

associations in this study linked previous genomic analyses (Jordan et al., 2017) and 

quantitative analyses (Jordan et al. in preparation) of climate adaptation in E. microcarpa, 

validating earlier results, providing stronger evidence of climate as a driver of local adaption 

and highlighting potential genes or genic regions underlying quantitative traits.  

The study firstly demonstrated that putatively adaptive genomic markers explained, 

individually, a small proportion of genetic variation in quantitative traits. This, along with the 

fact that multiple SNPs associated with individual traits, is in line with the expectations for 

polygenic traits, and characteristic of associations studies in trees (Kremer et al., 2014; 

Yeaman et al., 2016). Indeed, variance estimates found here are comparable to other SNP-

trait association studies in trees (Eckert et al. 2009; Holliday et al. 2010; Alberto et al. 2013). 

The relatively small number of SNP-trait associations found here is likely due to the small 

size and power of this study, along with the small effect sizes associated with the markers (Le 

Corre & Kremer, 2012; Eckert et al., 2013). Future analyses are warranted to test conclusions 

drawn from these results, as well as to repeat these analyses with more genomic markers and 

assessing a wider range of traits, including phenological and physiological traits. Multi-

species analysis may also provide additional evidence for genomic regions and mechanisms 

underlying climate adaptation (e.g. Yeaman et al. 2016).  

Secondly, as found in other studies (Eckert et al., 2009; De Kort et al., 2014), the results 

demonstrated the power of a combined approach for validating genomic signatures of 

adaptation, via associations between putatively adaptive SNPs and phenotypic variation, and 

by validating associations with climate. This combined approach strengthened evidence of 

local adaptation as a driver of genetic differences, despite the small dataset. For example, in 

this study, associations between leaf length, two independent SNPs and mean annual 

temperature corroborate genomic adaptation analyses and highlight potential genes 

underlying temperature-related leaf variation, based on Arabidopsis thaliana (TAIR10) 

orthologues of E. grandis genes. Results of this study therefore support the combination of 

traditional common garden trials with modern genomic technologies as a method for 

demonstrating a genetic basis for trait variation and local adaptation in trees (Sork et al., 

2013; de Villemereuil et al., 2016). 
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Conservation & restoration under climate change 

Incorporating evolutionary potential into conservation 

management will be essential for long-term sustainability in 

natural systems under environmental change (Sgrò et al., 

2011; Hoffmann et al., 2015). As restoration seed sourcing 

strategies move away from ‘local’ and toward capturing 

evolutionary potential, especially pre-adapted climate-related 

diversity (Prober et al., 2015), understanding climate-related 

variation across species’ distributions will help inform 

effective seed sourcing for long-term sustainability of 

populations under climate change. Results of this study 

suggest the presence of climate-associated genetic variation within E. microcarpa that could 

be utilised to enhance diversity and pre-adapted climate variation within restoration plantings 

and the wider landscape. In particular, temperature, aridity and winter precipitation appear to 

be important climate drivers of adaptation in E. microcarpa, corroborating results of previous 

genomic analyses (Jordan et al., 2017). Sourcing seed along these climatic gradients, towards 

projected future climates, may therefore enhance the long-term potential of restoration sites 

as well as support adaptation in the wider landscape through the introduction of pre-adapted 

genetic variation.  

 

CONCLUSION 

This study found evidence of climate adaptation in E. microcarpa. A combined approach, 

employing multiple independent lines of evidence, proved an effective method for 

corroborating previous results and providing greater support for climate as a driver of local 

adaptation in E. microcarpa. Given the small size of this study, results presented here are 

suggestive, highlighting candidate traits and climatic variables for further investigations of 

adaptation. Exploring additional genomic variants, environmental variables and traits would 

also improve knowledge of important adaptive genes and traits in E. microcarpa. 

Furthermore, additional common garden sites, in contrasting environments, would assist in 

separating plastic from genetic responses as well as identifying gene-by-environment 

interactions that were not able to be separated in this study.  
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APPENDIX 
 
Table A.1 Trait correlations (a) and contributions (b) to trait principal component (PC) axes 
in Eucalyptus microcarpa. PC axes from a principal component analysis (PCA) of 
provenance level Best Unbiased Linear Estimate (BLUEs) trait data. Values in bold represent 
(a) highest correlation per trait and (b) two highest contributing traits to the PC axis. Note, 
first line for both the growth and leaf PCA indicate the percentage variance explained by the 
principal component axes (in italics). 
 
 

 
a)  Correlation 

 
b)  Contribution (%) 

PC axis 1 2 3 
 

1 2 3 
Growth trait PCA        
 % variance 79.31 19.07      
 DBH 0.91 -0.40 

  
34.51 28.08 

  Height 0.98 -0.13 
  

40.18 2.84 
  Size ratio 0.78 0.63 

  
25.30 69.08 

 Leaf trait PCA 
        % variance 58.63 30.30 8.99     

 Area 0.97 -0.01 0.24 
 

26.58 0.00 10.58 
 Length 0.85 0.44 -0.06 

 
20.43 10.75 0.60 

 Weight 0.85 -0.27 0.44 
 

20.71 4.02 36.48 
 Thickness -0.75 0.51 0.41 

 
16.10 14.44 31.26 

 SLA 0.73 0.59 -0.31 
 

15.23 18.83 18.24 
 Density 0.18 -0.97 -0.12 

 
0.96 51.96 2.83 
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Table A.2 Significant SNP-trait associations (p < 0.05) in Eucalyptus microcarpa and possible gene function of SNPs based on Arabidopsis 
thaliana orthologues (TAIR10) of predicted E. grandis genes (information from E. grandis v1.1 genome annotation). Generalised linear model 
(GLM) accounts for population structure, whilst the mixed linear model (MLM) accounts for population structure and kinship using a kinship 
matrix based on individual kinship (indv. kinship) or family-average kinship (avg. kinship). 
 
  GLM 

 
MLM 

(indv. kinship) 
MLM 

(avg. kinship) 
 Eucalyptus grandis gene 

information (+/- 2000 bp) 
 Best TAIR10 gene orthologue 

Trait   Marker p r2 p r2 p r2  Name Gene effect  Name Symbol Definition 
DBH              
 3:59841756 0.026 0.019 0.043 0.019 0.049 0.019  Eucgr.C03147 synonymous  AT3G13980.1   
Size ratio              
 10:29282238 0.014 0.014 0.023 0.012 0.015 0.014  Eucgr.J02333 synonymous  AT3G27150.1  Galactose oxidase/kelch repeat 

superfamily protein 
 10:29282238 0.014 0.014 0.023 0.012 0.015 0.014  Eucgr.J02334 upstream  AT5G14170.1 CHC1 SWIB/MDM2 domain superfamily 

protein 
 2:58822368 0.041 0.010 0.060 0.009 0.044 0.010  Eucgr.B03399 downstream  AT1G27150.1  Tetratricopeptide repeat (TPR)-like 

superfamily protein 
Leaf area              
 4:30801453 0.099 0.011 0.069 0.013 0.037 0.016  Eucgr.D01681 synonymous, 

intron 
 AT1G64660.1 ATMGL, 

MGL 
methionine gamma-lyase 

 10:19426430 0.040 0.015 0.159 0.009 0.130 0.010  Eucgr.J01501 intron  AT1G67100.1 LBD40 LOB domain-containing protein 40 
 11:4085447 0.005 0.027 0.052 0.016 0.044 0.017  Eucgr.K00355 downstream  AT5G38280.1 PR5K PR5-like receptor kinase 
Leaf length              
 1:17805026 0.038 0.018 0.076 0.015 0.055 0.017  Eucgr.A01148 upstream  AT5G03230.1  Protein of unknown function, DUF584 
 2:57262814 0.047 0.014 0.257 0.006 0.160 0.009  Eucgr.B03228 synonymous  AT3G27320.1  alpha/beta-Hydrolases superfamily 

protein 
 2:58822368 0.043 0.015 0.136 0.009 0.161 0.008  Eucgr.B03399 downstream  AT1G27150.1  Tetratricopeptide repeat (TPR)-like 

superfamily protein 
 2:63702271 0.057 0.013 0.036 0.016 0.002 0.030  Eucgr.B03985 missense  AT5G49620.1 AtMYB78, 

MYB78 
myb domain protein 78 

 4:30801453 0.013 0.020 0.012 0.021 0.004 0.026  Eucgr.D01681 synonymous, 
intron 

 AT1G64660.1 ATMGL, 
MGL 

methionine gamma-lyase 

 5:5009176 0.001 0.033 0.030 0.016 0.130 0.009  Eucgr.E00527 missense  AT4G23020.1   
 6:39617441 0.037 0.018 0.106 0.013 0.178 0.010  Eucgr.F02999 synonymous  AT1G22610.1  C2 calcium/lipid-binding plant 

phosphoribosyltransferase family protein 
Continued on next page 
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Table 4.5 Continued from previous page  
  GLM 

 
MLM 

(indv. kinship) 
MLM 

(avg. kinship) 
 Eucalyptus grandis gene 

information (+/- 2000 bp) 
 Best TAIR10 gene orthologue 

Trait   Marker p r2 p r2 p r2  Name Gene effect  Name Symbol Definition 
Leaf weight              
 5:4625458 0.061 0.013 0.028 0.017 0.027 0.017  Eucgr.E00491 upstream  AT3G60890.2 ZPR2 protein binding 
Leaf thickness              
 5:4625458 0.005 0.023 0.006 0.023 0.007 0.023  Eucgr.E00491 upstream  AT3G60890.2 ZPR2 protein binding 
SLA              
 5:4625458 0.028 0.017 0.024 0.018 0.017 0.020  Eucgr.E00491 upstream  AT3G60890.2 ZPR2 protein binding 
 6:45708775 0.025 0.018 0.216 0.007 0.072 0.013  Eucgr.F03750 intron  AT2G25710.1 HCS1 holocarboxylase synthase 1 
 11:4085447 0.032 0.018 0.020 0.021 0.015 0.022  Eucgr.K00355 downstream  AT5G38280.1 PR5K PR5-like receptor kinase 
Leaf density              
 5:4625458 0.040 0.014 0.102 0.010 0.042 0.014  Eucgr.E00491 upstream  AT3G60890.2 ZPR2 protein binding 
 6:39617441 0.029 0.018 0.086 0.014 0.044 0.018  Eucgr.F02999 synonymous  AT1G22610.1  C2 calcium/lipid-binding plant 

phosphoribosyltransferase family protein 
 
 
 
 
 


